Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Curr Med Chem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38616761

RESUMO

BACKGROUND/AIM: Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations. METHOD: Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively. RESULTS: Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, andQTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 µM, 28.27 ± 1.52 µM, and 22.93 ± 1.63 µM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 µM). CONCLUSION: This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.

2.
Front Biosci (Landmark Ed) ; 29(2): 47, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420828

RESUMO

BACKGROUND: The leaves of Origanum majorana (O. majorana) are traditionally renowned for treating diarrhea and gut spasms. This study was therefore planned to evaluate its methanolic extract. METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to identify the phytochemicals, and Swiss albino mice were used for an in vivo antidiarrheal assay. Isolated rat ileum was used as an ex vivo assay model to study the possible antispasmodic effect and its mechanism(s). RESULTS: The GC-MS analysis of O. majorana detected the presence of 21 compounds, of which alpha-terpineol was a major constituent. In the antidiarrheal experiment, O. majorana showed a substantial inhibitory effect on diarrheal episodes in mice at an oral dosage of 200 mg/kg, resulting in 40% protection. Furthermore, an oral dosage of 400 mg/kg provided even greater protection, with 80% effectiveness. Similarly, loperamide showed 100% protection at oral doses of 10 mg/kg. O. majorana caused complete inhibition of carbachol (CCh, 1 µM) and high K+ (80 mM)-evoked spasms in isolated ileal tissues by expressing significantly higher potency (p < 0.05) against high K+ compared to CCh, similar to verapamil, a Ca++ antagonist. The verapamil-like predominant Ca++ ion inhibitory action of O. majorana was further confirmed in the ileal tissues that were made Ca++-free by incubating the tissues in a physiological salt solution having ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The preincubation of O. majorana at increasing concentrations (0.3 and 1 mg/mL) shifted towards the right of the CaCl2-mediated concentration-response curves (CRCs) with suppression of the maximum contraction. Similarly, verapamil also caused non-specific suppression of Ca++ CRCs towards the right, as expected. CONCLUSIONS: Thus, this study conducted an analysis to determine the chemical constituents of the leaf extract of O. majorana and provided a detailed mechanistic basis for the medicinal use of O. majorana in hyperactive gut motility disorders.


Assuntos
Antidiarreicos , Origanum , Ratos , Camundongos , Animais , Antidiarreicos/farmacologia , Antidiarreicos/uso terapêutico , Antidiarreicos/química , Jejuno , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Óleo de Rícino/farmacologia , Óleo de Rícino/uso terapêutico , Diarreia/tratamento farmacológico , Verapamil/farmacologia , Verapamil/uso terapêutico , Canais de Cálcio , Espasmo/tratamento farmacológico
3.
Neurochem Res ; 49(4): 980-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170385

RESUMO

Diabetic neuropathic pain is one of the most devasting disorders of peripheral nervous system. The loss of GABAergic inhibition is associated with the development of painful diabetic neuropathy. The current study evaluated the potential of 3-Hydroxy-2-methoxy-6-methyl flavone (3-OH-2'MeO6MF), to ameliorate peripheral neuropathic pain using an STZ-induced hyperglycemia rat model. The pain threshold was assessed by tail flick, cold, mechanical allodynia, and formalin test on days 0, 14, 21, and 28 after STZ administration accompanied by evaluation of several biochemical parameters. Administration of 3-OH-2'-MeO6MF (1,10, 30, and 100 mg/kg, i.p) significantly enhanced the tail withdrawal threshold in tail-flick and tail cold allodynia tests. 3-OH-2'-MeO6MF also increased the paw withdrawal threshold in mechanical allodynia and decreased paw licking time in the formalin test. Additionally, 3-OH-2'-MeO6MF also attenuated the increase in concentrations of myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), nitrite, TNF-α, and IL 6 along with increases in glutathione (GSH). Pretreatment of pentylenetetrazole (PTZ) (40 mg/kg, i.p.) abolished the antinociceptive effect of 3-OH-2'-MeO6MF in mechanical allodynia. Besides, the STZ-induced alterations in the GABA concentration and GABA transaminase activity attenuated by 3-OH-2'-MeO6MF treatment suggest GABAergic mechanisms. Molecular docking also authenticates the involvement of α2ß2γ2L GABA-A receptors and GABA-T enzyme in the antinociceptive activities of 3-OH-2'-MeO6MF.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Flavonas , Neuralgia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Estreptozocina , Simulação de Acoplamento Molecular , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Analgésicos/farmacologia , Ácido gama-Aminobutírico/farmacologia , Flavonas/farmacologia , Flavonas/uso terapêutico , Biomarcadores
4.
Front Biosci (Landmark Ed) ; 29(1): 43, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287835

RESUMO

BACKGROUND: Medicinal herbs are frequently used for the management of gastrointestinal disorders because they contain various compounds that can potentially amplify the intended therapeutic effects. Cuminaldehyde is a plant-based constituent found in oils derived from botanicals such as cumin, eucalyptus, myrrh, and cassia and is responsible for its health benefits. Despite the utilization of cuminaldehyde for several medicinal properties, there is currently insufficient scientific evidence to support its effectiveness in treating diarrhea. Hence, the present investigation was carried out to evaluate the antidiarrheal and antispasmodic efficacy of cuminaldehyde, with detailed pharmacodynamics explored. METHODS: An in vivo antidiarrheal test was conducted in mice following the castor oil-induced diarrhea model, while an isolated small intestine obtained from rats was used to evaluate the detailed mechanism(s) of antispasmodic effects. RESULTS: Cuminaldehyde, at 10 and 20 mg/kg, exhibited 60 and 80% protection in mice from episodic diarrhea compared to the saline control group, whereas this inhibitory effect was significantly reversed in the pretreated mice with glibenclamide, similar to cromakalim, an ATP-dependent K+ channel opener. In the ex vivo experiments conducted in isolated rat tissues, cuminaldehyde reversed the glibenclamide-sensitive low K+ (25 mM)-mediated contractions at significantly higher potency compared to its inhibitory effect against high K+ (80 mM), thus showing predominant involvement of ATP-dependent K+ activation followed by Ca++ channel inhibition. Cromakalim, a standard drug, selectively suppressed the glibenclamide-sensitive low K+-induced contractions, whereas no relaxation was observed against high K+, as expected. Verapamil, a Ca++ channel inhibitor, effectively suppressed both low and high K+-induced contractions with similar potency, as anticipated. At higher concentrations, the inhibitory effect of cuminaldehyde against Ca++ channels was further confirmed when the preincubated ileum tissues with cuminaldehyde (3 and 10 mM) in Ca++ free medium shifted CaCl2-mediated concentration-response curves (CRCs) towards the right with suppression of the maximum peaks, similar to verapamil, a standard Ca++ ion inhibitor. CONCLUSIONS: Present findings support the antidiarrheal and antispasmodic potential of cuminaldehyde, possibly by the predominant activation of ATP-dependent K+ channels followed by voltage-gated Ca++ inhibition. However, further in-depth assays are recommended to know the precise mechanism and to elucidate additional unexplored mechanism(s) if involved.


Assuntos
Antidiarreicos , Benzaldeídos , Cimenos , Parassimpatolíticos , Ratos , Camundongos , Animais , Antidiarreicos/efeitos adversos , Parassimpatolíticos/efeitos adversos , Cromakalim/efeitos adversos , Glibureto/efeitos adversos , Extratos Vegetais/farmacologia , Jejuno , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Verapamil/efeitos adversos , Trifosfato de Adenosina
5.
Int J Biol Macromol ; 258(Pt 1): 128812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114011

RESUMO

The highly infectious respiratory illness 'COVID-19' was caused by SARS-CoV-2 and is responsible for millions of deaths. SARS-single-stranded viral RNA genome encodes several structural and nonstructural proteins, including papain-like protease (PLpro), which is essential for viral replication and immune evasion and serve as a potential therapeutic target. Multiple computational techniques were used to search the natural compounds that may block the protease and deubiquitinase activities of PLpro. Five compounds showed strong interactions and binding energy (ranges between -8.18 to -8.69 Kcal/mol) in our in-silico studies. Interestingly, those molecules strongly bind in the PLpro active site and form a stable complex, as shown by microscale molecular dynamic simulations (MD). The dynamic movements indicate that PLpro acquires closed conformation by the attachment of these molecules, thereby changing its normal function. In the in-vitro evaluation, compound COMP4 showed the most potent inhibitory potential for PLpro (protease activity: 2.24 ± 0.17 µM and deubiquitinase activity: 1.43 ± 0.14 µM), followed by COMP1, 2, 3, and 5. Furthermore, the cytotoxic effect of COMP1-COMP5 on a human BJ cell line revealed that these compounds demonstrate negligible cytotoxicity at a dosage of 30 µM. The results suggest that these entities bear therapeutic efficacy for SARS-CoV-2 PLpro.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Papaína/química , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Produtos Biológicos/farmacologia , Enzimas Desubiquitinantes , Antivirais/farmacologia
6.
Future Med Chem ; 15(23): 2195-2208, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38085012

RESUMO

Background: Medication used to treat Type 2 diabetes by decreasing the absorption of carbohydrates in the intestine consists of α-glucosidase inhibitors. Polyhydroquinoline derivatives have attracted interest as excellent antidiabetic agents. Methods: Polyhydroquinoline derivatives (1-17) were synthesized and tested for in vitro α-glucosidase inhibitory activity. Results: All the synthesized compounds exhibited excellent to good inhibitory activity, having IC50 values from 1.23 ± 0.03 to 73.85 ± 0.61 µM, compared with the standard drug, acarbose. The binding mechanism of these derivatives with α-glucosidase was deduced by docking studies and indicated that a slight variation in the orientation of compounds, affects their binding capability. Conclusion: In order to find new antidiabetic drugs, this study has discovered prospective lead candidates.


Assuntos
Diabetes Mellitus Tipo 2 , alfa-Glucosidases , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Prospectivos , Simulação de Acoplamento Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química
7.
ACS Omega ; 8(44): 41918-41929, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37969994

RESUMO

In ancient times, Withania coagulans Dunal was used as a therapeutic plant for the treatment of several diseases. This report aims to examine the effect of Agrobacterium tumefactions-mediated transformation of W. coagulans with the rolA gene to enhance secondary metabolite production, antioxidant activity, and anticancer activity of transformed tissues. Before transgenic plant production, the authors designed an efficient methodology for in vitro transformation. In this study, leaf explants were cultured on Murashage and Skoog (MS) media containing different amounts of naphthalene acetic acid (NAA) and benzyl adenine (BA). The best performance for inducing embryogenic callus was in MS medium containing 4 µM NAA and 6.0 µM BA, while the best results for shooting (100%) were obtained at 8 µM benzyl adenine. On the other hand, direct shooting was attained by subculturing leaves on MS medium supplemented with 8 µM benzyl adenine. Prolonged shoots showed excellent in vitro rooting results (80%) with 12 µM indole-3-butyric acid (IBA). The samples were precultivated for 3 days and were followed by 48 h infection with A. tumefaciens strain GV3101 having pCV002. Then, a vector expressed the rol A gene of strain Agrobacterium rhizogenes. Furthermore, three independent transgenic shoot lines and one callus line (T2) were produced and exhibited stable integration of transgene rol A genes, as revealed by PCR analysis. Transgenic strains showed a significant increase in antioxidant potential as compared to untransformed plants. Additionally, LC-MS analysis showed that the transformed strains have a higher withanolide content as compared to untransformed ones. Moreover, the reduced proliferation of prostate cancer cells was observed after treatment with extracts of transgenic plants. Furthermore, these transformed plants exhibited superior antioxidant capability and higher withanolide content than untransformed ones. In conclusion, the reported data can be used to select withanolide-rich germplasm from transformed cell cultures.

8.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631097

RESUMO

Stroke ranks as the world's second most prevalent cause of mortality, and it represents a major public health concern with profound economic and social implications. In the present study, we elucidated the neuroprotective role of quercetin on NLRP3-associated pyroptosis, Nrf2-coupled anti-inflammatory, and mTOR-dependent downstream pathways. Male Sprague Dawley rats were subjected to 72 h of transient middle cerebral artery ischemia, followed by the administration of 10 mg/kg of quercetin. Our findings demonstrated that MCAO induced elevated ROS which were coupled to inflammasome-mediated pyroptosis and altered mTOR-related signaling proteins. We performed ELISA, immunohistochemistry, and Western blotting to unveil the underlying role of the Nrf2/HO-1 and PDK/AKT/mTOR pathways in the ischemic cortex and striatum. Our results showed that quercetin post-treatment activated the Nrf2/HO-1 cascade, reversed pyroptosis, and modulated the autophagy-related pathway PDK/AKT/mTOR/P70S6/P6/eIF4E/4EBP1. Further, quercetin enhances the sequestering effect of 14-3-3 and reversed the decrease in interaction between p-Bad and 14-3-3 and p-FKHR and 14-3-3. Our findings showed that quercetin exerts its protective benefits and rescues neuronal damage by several mechanisms, and it might be a viable neuroprotective drug for ischemic stroke therapy.

9.
Toxicol Appl Pharmacol ; 476: 116657, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597755

RESUMO

Myocardial infarction results in an increased inflammatory and oxidative stress response in the heart, and reducing inflammation and oxidative stress after MI may offer protective effects to the heart. In the present study, we examined the cardioprotective effects of ferulic acid (FA) and ferulic acid nanostructured solid lipid nanoparticles (FA-SLNs) in an isoproterenol (ISO) induced MI model. Male Sprague Dawley rats were divided into five experimental groups to compare the effects of FA and FA-SLNs. The findings revealed that ISO led to extensive cardiomyopathy, characterized by increased infarction area, edema formation, pressure load, and energy deprivation. Additionally, ISO increased the levels of inflammatory markers (COX-2, NLRP3, and NF-кB) and apoptotic mediators such as p-JNK. However, treatment with FA and FA-SLNs mitigated the severity of the ISO-induced response, and elevated the levels of antioxidant enzymes while downregulating inflammatory pathways, along with upregulation of the mitochondrial bioenergetic factor PPAR-γ. Furthermore, virtual docking analysis of FA with various protein targets supported the in vivo results, confirming drug-protein interactions. Overall, the results demonstrated that FA-SLNs offer a promising strategy for protecting the heart from further injury following MI. This is attributed to the improved drug delivery and therapeutic outcomes compared to FA alone.


Assuntos
Lipossomos , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Modelos Animais
10.
Biomed Pharmacother ; 165: 115214, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516016

RESUMO

Diabetes mellitus is a rapidly spreading global metabolic disorder that has serious social, health, and economic consequences. Herein, we have evaluated in vivo antidiabetic and antihyperlipidemic effects of myrrhanone-B and myrrhanol-B (isolated from Commiphora mukul Hook). We observed that treatment with myrrhanone-B and myrrhanol-B at a dose of 5 and 10 mg/kg body weight for 21 days significantly improved body weight loss, water consumption, and the concentration of blood glucose level (BGL) in alloxan (120 mg/kg) induced diabetic mice, which indicates that the compounds possess strong anti-diabetic activities. In the biochemical analysis, these compounds improved an abnormal level of total cholesterol (TC), triacylglycerol (TG), and low-density lipoprotein cholesterol (LDL-C) to a normal level and increased the high-density lipoprotein cholesterol level (HDLC). Later, drug target of compounds was predicted through in-silico docking which shows that these compounds nicely fit in the active site of α-glucosidase enzyme and mediates excellent interactions with the catalytic residues, Asp214 and Asp349. The in-silico results were confirmed by in-vitro testing of myrrhanone-B and myrrhanol-B against α-glucosidase where both the compounds exhibited excellent inhibitory potency with IC50 values of 19.50 ± 0.71, and 16.11 ± 0.69 µM, respectively. Furthermore, mechanistic study was conducted to observe their binding mechanism, which reflect that myrrhanol-B has mixed type of inhibition (ki = 12.33 ± 0.030 µM), while myrrhanone-B demonstrates competitive type of inhibition (ki =14.53 ± 0.040 µM).


Assuntos
Commiphora , Diabetes Mellitus Experimental , Animais , Camundongos , alfa-Glucosidases , Colesterol , Commiphora/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Resinas Vegetais/química
11.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37259377

RESUMO

A series of 24 new 1H-1,2,3-triazole hybrids of 3-O-acetyl-11-keto-ß-boswellic acid (ß-AKBA (1)) and 11-keto-ß-boswellic acid (ß-KBA (2)) was designed and synthesized by employing "click" chemistry in a highly efficient manner. The 1,3-dipolar cycloaddition reaction between ß-AKBA-propargyl ester intermediate 3 or ß-KBA-propargyl ester intermediate 4 with substituted aromatic azides 5a-5k in the presence of copper iodide (CuI) and Hünig's base furnished the desired products-1H-1,2,3-triazole hybrids of ß-AKBA (6a-6k) and ß-KBA (7a-7k)-in high yields. All new synthesized compounds were characterized by 1H-, 13C-NMR spectroscopy, and HR-ESI-MS spectrometry. Furthermore, their α-glucosidase-inhibitory activity was evaluated in vitro. Interestingly, the results obtained from the α-glucosidase-inhibitory assay revealed that all the synthesized derivatives are highly potent inhibitors, with IC50 values ranging from 0.22 to 5.32 µM. Among all the compounds, 6f, 7h, 6j, 6h, 6g, 6c, 6k, 7g, and 7k exhibited exceptional inhibitory potency and were found to be several times more potent than the parent compounds 1 and 2, as well as standard acarbose. Kinetic studies of compounds 6g and 7h exhibited competitive and mixed types of inhibition, with ki values of 0.84 ± 0.007 and 1.18 ± 0.0012 µM, respectively. Molecular docking was carried out to investigate the binding modes of these compounds with α-glucosidase. The molecular docking interactions indicated that that all compounds are well fitted in the active site of α-glucosidase, where His280, Gln279, Asp215, His351, Arg442, and Arg315 mainly stabilize the binding of these compounds. The current study demonstrates the usefulness of incorporating a 1H-1,2,3-triazole moiety into the medicinally fascinating boswellic acids skeleton.

12.
ACS Omega ; 8(13): 12028-12038, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033817

RESUMO

Atmospheric pressure plasma jets are gaining a lot of attention due to their widespread applications in the field of bio-decontamination, polymer modification, material processing, deposition of thin film, and nanoparticle fabrication. Herein, we are reporting the disinfection of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli bacteria using plasma jet. In this regard, Ar-O2, Ar-N2, and Ar-O2-N2 mixture plasma is generated and characterized using optical and electrical characterization. Variation in plasma parameters like electron temperature, electron density, and reactive species production is monitored with discharge parameters such as applied voltage and feed gas concentration. Results show that the peak average power consumed in Ar-O2, Ar-N2, and Ar-O2-N2 mixture plasma is found to be 4.45, 2.93, and 4.35 W respectively, at 8 kV. Moreover, it is noted that by increasing applied voltage, the electron temperature, electron density, and reactive species production also increases. It is worth noting that electron temperature increases with increase in oxygen concentration in the mixture (, while it decreases with increase in nitrogen concentration in the mixture (Ar-N2). Similarly, a decreasing trend in electron temperature is noted for Ar-O2-N2 mixture plasma. On the other hand, a decreasing trend in electron density is noted for all the mixtures. Reduction in viable colonies of Pseudomonas aeruginosa, Staphylococcus Aureus, and Escherichia coli were confirmed by the serial dilution method. The inactivation efficiency of pulsed DC plasma generated, in the Ar-N2 mixture at 8 kV and 6 KHz, was evaluated against P. aeruginosa, S. aureus and E. coli bacteria by measuring the number of surviving cells versus plasma treatment time. Results showed that after 240 s of plasma treatment, the number of survival colonies of the mentioned bacteria was reduced to less than 30 CFU/mL.

13.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978910

RESUMO

The present study explored Euphorbia larica essential oil (ELEO) constituents for the first time, obtained via hydro-distillation by means of Gas Chromatography-Mass Spectrometry (GC-MS) profiling. The essential oil was screened in vitro against breast cancer cells, normal cell lines, α-glucosidase, carbonic anhydrase-II (CA-II), free radical scavenging and in vivo analgesic and anti-inflammatory capabilities. The GC-MS screening revealed that the ELEO comprises sixty compounds (95.25%) with the dominant constituents being camphene (16.41%), thunbergol (15.33%), limonene (4.29%), eremophilene (3.77%), and ß-eudesmol (3.51%). A promising antidiabetic capacity was noticed with an IC50 of 9.63 ± 0.22 µg/mL by the ELEO as equated to acarbose with an IC50 = 377.71 ± 1.34 µg/mL, while a 162.82 ± 1.24 µg/mL inhibition was observed against CA-II. Regarding breast cancer, the ELEO offered considerable cytotoxic capabilities against the triple-negative breast cancer (MDA-MB-231) cell lines, having an IC50 = 183.8 ± 1.6 µg/mL. Furthermore, the ELEO was also tested with the human breast epithelial (MCF-10A) cell line, and the findings also presumed that the ELEO did not produce any damage to the tested normal cell lines. The ELEO was effective against the Gram-positive bacteria and offered a 19.8 ± 0.02 mm zone of inhibition (ZOI) against B. atrophaeus. At the same time, the maximum resistance with 18.03 ± 0.01 mm ZOI against the fungal strain Aspergillus parasiticus was observed among the tested fungal strains. An appreciable free radical significance was observed via the DPPH assay with an IC50 = 133.53 ± 0.19 µg/mL as equated to the ABTS assay having an IC50 = 154.93 ± 0.17 µg/mL. The ELEO also offered a substantial analgesic capacity and produced 58.33% inhibition in comparison with aspirin, a 68.47% decrease in writhes, and an anti-inflammatory capability of 65.54% inhibition, as equated to the standard diclofenac sodium having 73.64% inhibition. Hence, it was concluded that the ELEO might be a natural source for the treatment of diabetes mellitus, breast cancer, analgesic, inflammatory, and antimicrobial-related diseases. Moreover, additional phytochemical and pharmacological studies are needed to isolate responsible chemical ingredients to formulate new drugs for the examined activities.

14.
ACS Omega ; 8(8): 8052-8065, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872974

RESUMO

Phthalimides have diverse bioactivities and are attractive molecules for drug discovery and development. Here, we explored new synthesized phthalimide derivatives (compounds 1-3) in improving memory impairment associated with Alzheimer's disease (AD), using in vitro and ex vivo acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition and in vivo models, including Y-maze test and novel object recognition test (NORT). Compounds 1-3 exhibited significant AChE activity with IC50 values of 10, 140, and 18 µM and BuChE with IC50 values of 80, 50, and 11 µM, respectively. All compounds 1-3 showed excellent antioxidant potential in DPPH and ABTS assays with IC50 values in the range of 105-340 and 205-350 µM, respectively. In ex vivo studies, compounds 1-3 also significantly inhibited both enzymes in a concentration-dependent manner along with significant antioxidant activities. In in vivo studies, compounds 1-3 reversed scopolamine-induced amnesia as indicated by a significant increase in the spontaneous alternation in the Y-maze test and an increase in the discrimination index in the NORT. Molecular docking was also conducted for compounds 1-3 against AChE and BuChE, which showed that compounds 1 and 3 have excellent binding with AChE and BuChE as compared to 2. These findings suggest that compounds 1-3 possess significant antiamnesic potential and may serve as useful leads to develop novel therapeutics for the symptomatic management and treatment of AD.

15.
Antibiotics (Basel) ; 12(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830265

RESUMO

In the current study, methanol (ADAM) extracts and their fractions, including chloroform (ADAC), ethyl acetate (ADAE), n-hexane (ADAH), and aqueous (ADAA) fractions, were prepared from aerial parts of Anogeissus dhofarica and evaluated for phytochemical assessment, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) analysis, and in vitro bioassays. The qualitative analysis determined that, except alkaloids, all the representative groups were found to be present in the analyzed samples. Samples under quantitative study displayed the highest amount of total phenolic contents in the ADAE fraction, while total flavonoid contents were highest in the ADAM extract. The ADAM extract was subjected to HR-ESI-MS to identify the chemical constituents that presented twenty-two bioactive ingredients, outlined for the first time from A. dhofarica, mainly contributed by sub-class flavanones. In the case of antimicrobial activity, the ADAE extract revealed an effective zone of inhibition (ZOI) against the Gram-positive bacterial strain (Staphylococcus aureus) with an MIC value of 0.78 ± 0.3 mg/mL, while the ADAA extract exhibited higher ZOI (34 ± 0.12 mm) against the fungal strain Candida kruzei with an MIC of 0.78 mg/mL. In the DPPH (2,2-diphenyl-1-picrylhydrazyl) analysis, the ADAE extract exhibited a maximum scavenging potential with an IC50 of 9.8 ± 1.2 µg/mL, succeeded by the ADAM extract with an IC50 of 17.4 ± 0.4 µg/mL free radical scavenging capability. In the antidiabetic assessment, the ADAE extract was the most effective, with an IC50 of 6.40 ± 0.1 µg/mL, while the same extract demonstrated prominent activity with 30.8% viability and an IC50 of 6.2 ± 0.3 µg/mL against breast cancer cell lines. The brine shrimp lethality assay demonstrated a correlation with the in vitro cytotoxicity assay, showing the ADAE extract as the most active, with a 70% mortality rate and an LC50 of 300.1 µg/mL. In conclusion, all the tested samples, especially the ADAE and ADAM extracts, have significant capabilities for the investigated activities that could be due to the presence of the bioactive compounds.

16.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838935

RESUMO

Phospholipase A2 (PLA2) promotes inflammation via lipid mediators and releases arachidonic acid (AA), and these enzymes have been found to be elevated in a variety of diseases, including rheumatoid arthritis, sepsis, and atherosclerosis. The mobilization of AA by PLA2 and subsequent synthesis of prostaglandins are regarded as critical events in inflammation. Inflammatory processes may be treated with drugs that inhibit PLA2, thereby blocking the COX and LOX pathways in the AA cascade. To address this issue, we report herein an efficient method for the synthesis of a series of octahydroquinazolinone compounds (4a-h) in the presence of the catalyst Pd-HPW/SiO2 and their phospholipase A2, as well as protease inhibitory activities. Among eight compounds, two of them exhibited overwhelming results against PLA2 and protease. By using FT-IR, Raman, NMR, and mass spectroscopy, two novel compounds were thoroughly studied. After carefully examining the SAR of the investigated compounds against these enzymes, it was found that compounds (4a, 4b) containing both electron-donating and electron-withdrawing groups on the phenyl ring exhibited higher activity than compounds with only one of these groups. DFT studies were employed to study the electronic nature and reactivity properties of the molecules by optimizing at the BLYP/cc-pVDZ. Natural bond orbitals helped to study the various electron delocalizations in the molecules, and the frontier molecular orbitals helped with the reactivity and stability parameters. The nature and extent of the expressed biological activity of the molecule were studied using molecular docking with human non-pancreatic secretory phospholipase A2 (hnps-PLA2) (PDB ID: 1DB4) and protease K (PDB ID: 2PWB). The drug-ability of the molecule has been tested using ADMET, and pharmacodynamics data have been extracted. Both the compounds qualify for ADME properties and follow Lipinski's rule of five.


Assuntos
Inibidores de Proteases , Dióxido de Silício , Humanos , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Fosfolipases A2/metabolismo , Ácido Araquidônico/metabolismo , Peptídeo Hidrolases , Inibidores de Fosfolipase A2/química
17.
ACS Omega ; 8(7): 6234-6243, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844517

RESUMO

Polyhydroquinoline derivatives (1-15) were synthesized through an unsymmetrical Hantzsch reaction in excellent yields by treating 3,5-dibromo-4-hydroxybenzaldehyde, dimedone, ammonium acetate, and ethyl acetoacetate in ethanol solvent. The structures of the synthesized compounds (1-15) were deduced through different spectroscopic techniques such as 1H NMR, 13C NMR, and HR-ESI-MS. The synthesized products were tested for their α-glucosidase inhibitory activity where compounds 11 (IC50 = 0.56 ± 0.01 µM), 10 (IC50 = 0.94 ± 0.01 µM), 4 (IC50 = 1.47 ± 0.01 µM), 2 (IC50 = 2.20 ± 0.03 µM), 6 (IC50 = 2.20 ± 0.03 µM), 12 (IC50 = 2.22 ± 0.07 µM), 7 (IC50 = 2.76 ± 0.04 µM), 9 (IC50 = 2.78 ± 0.03 µM), and 3 (IC50 = 2.88 ± 0.05 µM) exhibited high potential for the inhibition of α-glucosidase, while the rest of the compounds (8, 5, 14, 15, and 13) showed significant α-glucosidase inhibitory potential with IC50 values of 3.13 ± 0.10, 3.34 ± 0.06, 4.27 ± 0.13, 6.34 ± 0.15, and 21.37 ± 0.61 µM, respectively. Among the synthesized series, two compounds, i.e., 11 and 10, showed potent α-glucosidase inhibitory potential higher than the standard. All the compounds were compared with standard drug "acarbose" (IC50 = 873.34 ± 1.67 µM). An in silico method was used to predict their mode of binding within the active site of enzyme to understand their mechanism of inhibition. Our in silico observation complements with the experimental results.

18.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36671023

RESUMO

Feralolide, a dihydroisocoumarin, was isolated from the methanolic extract of resin of Aloe vera. The present study aims to investigate the in vivo ability of feralolide to ameliorate memory impairment induced by scopolamine using a battery of in vitro assays, such as antioxidant and acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, and in vivo animal models, including elevated plus maze, Morris water maze, passive avoidance, and novel object recognition tests. Feralolide caused a concentration-dependent inhibition of AChE and BuChE enzymes with IC50 values of 55 and 52 µg/mL, respectively, and antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) with IC50 values 170 and 220 µg/mL, respectively. Feralolide reversed the scopolamine-induced amnesia as indicated by a dose-dependent decrease in escape latency, path length, and passing frequency in the Morris water maze test compared with the relevant control. The compound also significantly increased the discrimination index in a dose-dependent manner in NORT and decreased transfer latency in EPM, reflective of its memory-enhancing effect. Furthermore, feralolide also caused significant dose-dependent elevation in the step-down latency (SDL) in the passive avoidance test. The results indicated that feralolide might be a helpful memory restorative mediator in treating cognitive disorders such as Alzheimer's disease.

19.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672505

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide, especially in Asian countries. The emergence of its drug resistance and its side effects demands alternatives, to improve prognosis. Since the majority of cancer drugs are derived from natural sources, it provides a window to look for more biocompatible alternatives. In this study, two natural compounds, costunolide (CE) and aloe emodin (AE), were isolated from the stem of Lycium shawii. The compounds were examined for their anticancer and apoptotic potentials against OSCC (CAL 27) cells, using an in vitro analysis, such as a MTT assay, scratch assay, gene, and protein expressions. Both compounds, CE and AE, were found to be cytotoxic against the cancer cells with an IC50 value of 32 and 38 µM, respectively. Moreover, the compounds were found to be non-toxic against normal NIH-3T3 cells and comparable with the standard drug i.e., 5-fluorouracil (IC50 = 97.76 µM). These compounds were active against normal cells at higher concentrations. Nuclear staining displayed the presence of apoptosis-associated morphological changes, i.e., karyopyknosis and karyorrhexis in the treated cancer cells. Flow cytometry results further confirmed that these compounds induce apoptosis rather than necrosis, as the majority of the cells were found in the late apoptotic phase. Gene and protein expression analyses showed an increased expression of apoptotic genes, i.e., BAK, caspase 3, 6, and 9. Moreover, the compounds significantly downregulated the expression of the anti-apoptotic (BCL-2 L1), metastatic (MMP-2), and pro-inflammatory (COX-2) genes. Both compounds have shown promising anticancer, apoptotic, and anti-migratory activities against the OSCC cell line (i.e., CAL-27). However, further in vivo studies are required to explore these compounds as anticancer agents.

20.
Nat Prod Res ; 37(12): 2049-2054, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36008779

RESUMO

This study aimed to develop a local 3 D-printed bioactive graft using poly-caprolacton (PCL) as a drug carrier and 3-O-acetyl-ß-boswellic acid (ß-ABA) as an anticancer compound. ß-ABA-loaded 3 D-printed scaffold was fabricated and physically characterized. The results indicated more desirable mechanical and physical properties of the ß-ABA-loaded PCL mat in comparison with the PCL scaffold. Following sustained release of ß-ABA, the ß-ABA-loaded PCL scaffold revealed selective cytotoxic activity against melanoma cells, while the PCL + ABA with the bolus delivery of ß-ABA was toxic against fibroblast cells. Followed by the induction of apoptosis in melanoma cells at the gene level, the result of the western blot showed that the ß-ABA-loaded scaffold significantly up-regulated P53 and down-regulated BCL2, with an increment in the ratio of Bax/BCL2. The selective anti-cancer properties of ß-ABA-loaded 3 D printed scaffold against melanoma cells indicated that this scaffold could be potentially used as a bioactive graft to improve the melanoma treatment.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Impressão Tridimensional , Proteínas Proto-Oncogênicas c-bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...